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The introduction of certain electronic feedback loops into photorefractive wave-coupling schemes makes
them noise free and leads to dramatic changes of the whole nonlinear behavior. The familiar steady states can
be transformed into periodic states that are characterized by ultimately high and low values of the diffraction
efficiency � of the recorded index grating or into quasisteady states with small values of �. These transfor-
mations possess thresholds with respect to controllable experimental parameters like the coupling strength and
the input intensity ratio. We present a general analysis of the threshold behavior for different modes of the
feedback operation and different types of the nonlinear photorefractive response. The results obtained �ana-
lytical and numerical� allow one to predict the regions of stability for feedback-controlled steady states and the
observable characteristics of the system, including the output amplitudes and diffraction efficiency of the
spatial grating, beyond these regions. They extend strongly the potentialities of the feedback-controlled wave
coupling.
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I. INTRODUCTION

Two-wave coupling owing to photorefractive �PR� nonlin-
earity is well understood nowadays both theoretically and
experimentally �1–3�. The incident light beams �with fixed
input intensities and phases� record a refractive index grating
�via light-induced charge separation and the linear electro-
optic effect� and experience mutual Bragg diffraction from
this spatial grating. As a result, a steady state is achieved;
this state is characterized by the energy and phase exchange
between the interacting beams and also by the spatial modu-
lation of the index grating. Such a steady state is unique, and
the diffraction efficiency of the recorded dynamic grating
ranges between 0 and 1. Quantitative characteristics of the
steady states depend on the type and strength of the photo-
refractive nonlinear response—i.e., on the phase shift be-
tween the index and light fringes and on how large the grat-
ing amplitude is at a given value of light contrast.

Implementation of a certain feedback loop, whose func-
tion is to adjust the phase �s of one of the incident beams �let
it be signal beam S� depending on the output intensity of this
beam �see Fig. 1�, brings us to a qualitatively new dynamic
nonlinear system which has no close analogs among the
known nonlinear devices. Mathematically, the novelty of this
system is due to the nonlinearity and nonlocality of the
boundary conditions expressing the feedback equations.
Physically, the possibility for implementation of various
electronic feedbacks between the optical input and output is
caused by the specific feature of the PR nonlinearity—its
relative slowness.

Initially the feedback in question was implemented to sta-
bilize the input light fringes �4,5�. It was found later that this
feedback changes strongly the observable properties of beam
coupling and grating recording in sufficiently thick photore-
fractive LiNbO3 crystals �6–9�. In particular, it has led to a

100% diffraction efficiency � of the recorded grating and
suppressed the harmful effect of nonlinear light scattering.
The first experimental publications included also an impor-
tant idea about the principle of the feedback operation. It has
been postulated that the input phase �s is adjusted in such a
way so as to make equal ±� /2 the phase difference �s be-
tween the diffracted and transmitted components of the S
beam.

Numerical modeling of the feedback-controlled beam
coupling in LiNbO3 crystals has shown �10� that the impo-
sition of the ideal feedback condition �s= ±� /2 enforces the
system to approach quickly a state with �=1 or 0 if the
crystal thickness d is sufficiently large. At this state, how-
ever, the transmitted or diffracted component of the S beam
turns to zero so that the phase difference �s becomes unde-

FIG. 1. Schematic of a feedback-controlled two-wave coupling
experiment; PD is a photodiode, LAI is a lock-in amplifier and
integrator, and PM is a piezomirror. The bent lines show schemati-
cally the grating fringes.
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fined. In other words, the postulated ideal conditions
�s��s�= ±� /2 are valid only within a restricted time inter-
val; they lose their meaning for ��1 or 0 and cannot explain
the permanent operation of the system.

Further analysis of the feedback operation has allowed to
modify the ideal feedback conditions by taking into account
a weak inertia of the electronic feedback loop �11,12�. An
inertial feedback condition, represented by a dynamic non-
linear equation for the input phase �s, ensures a permanent
operation mode. On the other hand, it is not much different
from the corresponding ideal condition unless ��1 or 0. It
is useful therefore to specify different feedback conditions by
indicating the ideal values of �s; see also below.

Employment of the inertial feedback conditions ±� /2 for
simulation of the feedback-controlled wave coupling in
LiNbO3 crystals has allowed one to predict the crossover
from familiar steady states to periodic states �attractors� with
increasing crystal thickness d and other critical parameters
like the input light contrast �11,12�. These periodic states are
distinguished by small oscillations of � in the close vicinity
of 1 or 0, strong oscillations of �s, and the presence of a
frequency detuning � between the light beams. Distinct pe-
riodic states possess different values of �, different oscilla-
tion periods, and different shapes of the phase modulation.
All predicted periodic states are found experimentally in
lithium niobate crystals �11,12�.

The use of numerical and analytical methods has allowed
during the last years to extend and refine our knowledge of
the capabilities of the new nonlinear-optical device �13–17�.
However, a number of fundamental and practically important
questions about the feedback operation still remain unan-
swered.

�i� Construction of the electronic feedback loop admits, as
known, not only the ±� /2 feedback conditions �ideal or in-
ertial� but also the 0, � conditions; see Sec. II C for more
details. What is the impact of the last-named feedbacks on
the observable characteristics of two-wave coupling?

�ii� How the impact of different feedbacks depends on the
type of the nonlinear response?

�iii� The major control parameters in the feedback experi-
ments are the input intensity ratio r0 and the coupling
strength ��0�d �the mathematical definitions are given be-
low�. What are the regions on the r0, ��0�d plane with quali-
tatively different feedback behavior?

The main purpose of this paper is to answer these ques-
tions. It is important that the lines separating different re-
gions of the r0, ��0�d plane �the separatrices� can be found on
the basis of simple analytical considerations. They give, in
particular, the regions of stability of the familiar steady
states—i.e., define the threshold for the appearance of new
dynamic regimes that are not necessarily periodic states. Di-
rect numerical simulations are needed within this approach
to qualify the type of dynamic regime. In short, we are going
to classify different nonlinear regimes and different possibili-
ties for the feedback operation on the basis of general ana-
lytical considerations.

II. BASIC RELATIONS

A. Coupled-wave and material equations

In the case of photorefractive nonlinearity, the refractive
index change is due to formation of the space-charge field

and the linear electro-optic effect �1,2�. In accordance with
Fig. 1, we present the space-charge field as Esc
= �1/2�E exp�iKx�+c.c., where K is the grating vector and
E=E�z , t� is the complex slowly varying grating amplitude.
The index change is given by �n=−rn3Esc /2, where r is the
relevant electro-optic coefficient and n is the background re-
fractive index.

The coupled-wave equations for the light amplitudes S
and R, which describe Bragg diffraction from the grating, are
given by �1,2�

�R

�z
= i�ES,

�S

�z
= i�E*R , �1�

where �=�n3r /	 is the known real coefficient and the aster-
isk means complex conjugation. The total light intensity is a
conserving quantity within the set �1�. For convenience we
normalize the light amplitudes in such a way that �R�2+ �S�2
=1.

The grating amplitude E obeys a material equation that
accounts for the processes of charge separation under light.
In what follows we restrict ourselves to the following fairly
general model equation �2,3�:

�tr
�

�t
+ 1�E = 2F RS*, �2�

where tr is the PR response time �inversely proportional to
the total intensity� and F is a complex coefficient character-
izing the PR nonlinearity. The absolute value of the product
2RS* is the light contrast m.

In steady state with R and S being time independent
�standing light pattern� we have E=2F RS*. The absolute
value �F� is here the coefficient of proportionality between
�E� and m while 
=arg F is the spatial phase shift between
the index and light fringes. The limiting cases of real and
imaginary F �
=0,� and ±� /2� correspond to the so-called
local and nonlocal PR response, respectively. The local re-
sponse is usually due to the drift of photoexcited charge car-
riers and/or the bulk photovoltaic effect. The nonlocal re-
sponse is often due to diffusion of the charge carriers.

In the literature one can find numerous model relations
expressing F and tr through the applied electric field E0, the
grating vector K, and material parameters; see, e.g., �2� and
references therein. For many PR ferroelectrics �LiNbO3,
LiTaO3, BaTiO3, KNbO3, etc.� it is sufficient to suppose that
tr is the dielectric relaxation time, F=Epv−E0� iED, where
Epv is the photovoltaic field, ED=KkbT /e is the diffusion
field, kb is the Boltzmann constant, T is the absolute tempera-
ture, and e is the elementary charge. The upper and lower
signs correspond to the photoexcitation of electrons and
holes, respectively.

B. Fundamental amplitudes

Since the problem of Bragg diffraction is linear, we can
represent the amplitudes S and R as linear combinations of
the transmitted �first� and diffracted �second� components
�see also �10,12,18,19��,

STURMAN, PODIVILOV, AND GORKUNOV PHYSICAL REVIEW E 72, 016621 �2005�

016621-2



S = S0fT
s + R0fD

s , R = R0fT
r + S0fD

r , �3�

where R0=R�0, t� and S0=S�0, t� are the input amplitudes.
The fundamental amplitudes fT

r �z , t� and fD
s �z , t� correspond

to testing of the grating by a unit R beam; see Fig. 2�a�. They
meet the same coupled-wave equations as R and S, respec-
tively; the boundary conditions for them are fT

r �0, t�=1,
fD

s �0, t�=0. The fundamental amplitudes fD
r �z , t� and fT

s �z , t�
correspond to testing of the same grating by a unit S beam;
see Fig. 2�b�. Their input values are 0 and 1, respectively.
The amplitudes fT,D

r and fT,D
s fully describe the transmission

and diffraction properties of the dynamic grating.
At the first sight, Eqs. �3� are useless because we cannot

express four fundamental amplitudes by two amplitudes S
and R. However, by making the complex conjugation of the
coupled-wave equations for fT

r and fD
s one can see easily that

fT
s = fT

r*, fD
s = − fD

r*. �4�

Only two fundamental amplitudes �let them be fT
s and fD

s � are
independent thus owing to the symmetry properties of the
coupled-wave equations. Using Eqs. �3� and �4�, we express
fT

s and fD
s explicitly through the recording amplitudes,

fT
s = S0

*S + R0R*, fD
s = R0

*S − S0R*. �5�

Some other properties of the fundamental amplitudes are
important as well. In accordance with our definitions �see
also Fig. 2 and Eqs. �4��, we have �= �fD

s �d��2= �fD
r �d��2.

These relations prove that the result of measurements of �
does not depend on which of the recording beams �R or S� is
blocked. They allow one to express � explicitly through the
recording amplitudes. Furthermore, we have �fT

s �d��2

= �fT
r �d��2=1−�. Last, we mention that the equality �=1 en-

sures the relation rd=r0
−1 between the output �rd

= �Sd�2 / �Rd�2� and input �r0= �S0�2 / �R0�2� intensity ratios �the
intensity interchange�.

Using Eqs. �3� and �4� we express now the phase differ-
ence �s between the diffracted and transmitted components
of the S beam through the input and output characteristics of
the recording beams,

�s = �r − �s + arg��S0Sd
* + R0

*Rd��R0
*Sd − S0Rd

*�� , �6�

where Rd=R�d , t� and Sd=S�d , t� are the output values of the
recording amplitudes and �s=arg S0 and �r=arg R0 are the
input phases of the S and R beams. Note that relation �6� is
general; it is free of any particular assumptions about prop-
erties of the PR response.

C. Feedback conditions

In experiment, the adjustment of the input phase �s is
accomplished with the help of a modulation technique �4,6�.
An auxiliary oscillating component ��s=�d sin t, whose
amplitude �d and period 2� / are much smaller than 1 and
the PR response time tr, respectively, is introduced into �s.
This component does not affect the grating and serves for
operation of the electronic feedback loop.

To describe the influence of the auxiliary phase modula-
tion on the amplitude S, it is sufficient to replace S0 by
S0 exp�i�d sin t� in the first of Eqs. �3�. Then, using the
smallness of �d and the above relations for the fundamental
amplitudes, one can make sure that the output intensity �Sd�2
acquires high-frequency components oscillating as sin t and
cos 2t. Their amplitudes are

I = m0
	��1 − ���d sin �s,

I2 = �m0/4�	��1 − ���d
2 cos �s, �7�

where m0=2�S0R0
*� is the input light contrast. The amplitudes

I and I2 are generally functions of time; they are expected
to vary slowly as compared to sin t. Both expressions in-
clude the phase difference �s.

Further steps of the feedback operation can be commented
with the help of Fig. 1. The photodetector �PD� transforms
linearly the output intensity �Sd�2�t� into an electric-voltage
signal. This signal is filtered using the heterodyne principle
and the components I�t� and I2�t� are extracted. Last, they
arrive at a lock-in amplifier and integrator �LAI�. One of the
amplified and integrated signals drives a piezomirror �PM�.

Since the PM displacement is proportional to the driving
voltage, the time derivative of the input phase �̇s is propor-
tional to I or I2. Supposing for definiteness that the inte-
grated I2 signal is chosen to govern the input phase, we
arrive at the feedback equation �11,12�

�̇s = �
m0

tf

	��1 − �� cos �s, �8�

where tf is a new time constant determined by the LAI and
PM specifications �see �6� and references therein for details
of the electronics�. It will be referred to as the feedback loop
response time. The feedback inertia is weak when tf � tr; this
case is indeed of our prime interest. Note the possibility of
choice between the signs � and � in the feedback equation.
As we shall see, the operation modes for the signs � and �
are different. The feedback equation which is relevant to the
use of I signal is obtained by the replacement of cos �s by
sin �s in Eq. �8�. Generally speaking, any linear combination
of the signals I and I2 can be used to govern the feedback
loop �8�.

Consider now the relationship between the derived iner-
tial feedback equations and the ideal feedback conditions. To
understand it, we recall that �i� the diffraction properties of
the grating are changing on the scale of the PR response time
tr �i.e., very slowly on the scale of tf� and �ii� the phase �s is
the difference between the feedback governed input phase �s
and a quantity that also varies slowly on the scale of tf; see
Eq. �6�. According to Eq. �8�, the phase �s relaxes then to

FIG. 2. Geometrical schemes relevant to the definition of the
fundamental amplitudes.
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±� /2 on the time scale of tf unless the product ��1−�� is
close to zero; i.e., the inertial feedback equations are almost
equivalent here to the ideal feedback conditions �s= ±� /2.
If we use ±I as the error signal in the feedback loop, the
phase �s arrives quickly to the ideal values 0 ,� unless �
=0,1. It is sufficient thus to indicate the ideal value of �s to
specify the corresponding inertial feedback condition. In the
general case, by making use of combinations of I and I2,
one can access the inertial feedback with an arbitrary ideal
value of �s.

A direct experimental proof of correctness of the feedback
equation �8� is presented in �20�. The ratio tf / tr was esti-
mated as 
10−3 for experiments with lithium niobate crys-
tals. This estimate was used in the previous numerical simu-
lations on the feedback-controlled beam coupling �11,12�. It
will be used also in the subsequent numerical calculations.

III. FEEDBACK-CONTROLLED STEADY STATES

A. General relations

In the general case, a frequency detuning � exists be-
tween the R and S beams in steady state so that the light and
index fringes are moving with a constant velocity � /K. We
attribute this detuning to the linear change of the input phase
�s�t�. We set S�exp�−i�t� and E�exp�i�t� to take it into
account. Equations �1� and �2� give then the known relations
for the wave amplitudes,

R = R0 exp��z/2�/D, S* = S0
* exp�− �z/2�/D , �9�

where the denominator D=D�z� is given by

D = ��R0�2 exp���z� + �S0�2 exp�− ��z���/2�� �10�

and �=��+ i�� is the complex rate constant,

� = i�0/�1 + i�tr� with �0 = 2�F . �11�

Its real part �� is referred to as the amplitude gain factor; the
imaginary part �� characterizes the phase coupling.

Using Eqs. �5� and �9�, one can find the following explicit
relations for the fundamental amplitudes:

fT
s = ��R0�2 exp��*z/2� + �S0�2 exp�− �*z/2��/D*,

fD
s = − R0

*S0�exp��*z/2� − exp�− �*z/2��/D*. �12�

Since �= �fD
s �d��2, we obtain, for steady-state diffraction ef-

ficiency,

� =
m0

2

2

cosh���d� − cos���d�
cosh���d� + W0 sinh���d�

, �13�

where W0= �R0�2− �S0�2= �r0−1� / �r0+1� is the normalized in-
put intensity difference and r0= �R0�2 / �S0�2 is the input inten-
sity ratio. This relation incorporates the coupling effects; it is
equivalent to an expression known since 1979 �21�.

Let us maximize and minimize � as a function of the
coupling parameters ��d and ��d. The maximum value of
the efficiency is �max=1. The maximizing value of ��d meets
the equation cos���d�=−1—i.e., ��d= ±� , ±3� , . . .. The

maximizing value of ��d is unique; it is given by relation
tanh���d /2�=−W0. The minimum value �min=0 is achieved
when ��=0 and ��d= ±2� , ±4� , . . .. Two conditions have to
be satisfied thus to turn � to 1 �or to 0�. The reason is simple:
The value �=1 �or 0� is achieved when both real and imagi-
nary parts of fT

s �d� �or fD
s �d�� are zeros.

The derived conditions will play an important role in the
subsequent analysis. The condition �=1 �or 0� gives us a
sequence of branches for the coupling strength ��0�d as a
function of r0—i.e., a sequence of curves on the ��0�d ,r0
plane. These curves, as we will see, separate the regions with
different feedback-controlled behavior. They will be referred
to as the separatrices or threshold curves. Each point of a
separatrix corresponds to a unique value of the frequency
detuning, i.e., �=��r0�.

Next, using Eqs. �6� and �12�, we calculate the steady-
state phase difference �s,

�s = arg�W0 cos���d� + i sin���d� − sinh���d�

− W0 cosh���d�� . �14�

It is well defined unless ��1−��=0. The lines ����0�d ,r0�
=1 and 0 serve thus as boundaries of the regions where the
phase difference �s is well defined.

The feedback is able to adjust the steady-state value of �s
by varying the detuning �. Consider the main possibilities,
which are relevant to different choices for the real and imagi-
nary parts of the complex quantity inside the square brackets
in Eq. �14�.

�i� �s= ±� /2. It is equivalent to the following two con-
ditions:

sinh���d� + W0 cosh���d� = W0 cos���d� ,

sin���d� � 0. �15�

�ii� �s=0,�. In this case we have

��d = j� ,

sinh���d� + W0 cosh���d� � W0�− 1� j , �16�

where j=0, ±1, . . . .
Each of these relations specifies some regions on the

��0�d ,r0 plane. If we replace in Eqs. �15� and �16� the sign �

by the sign �, we obtain a set of curves that separate the
regions where steady-state solutions with �s=� /2 and −� /2
�or �s=0 and �� take place. Different separatrices and re-
gions look fairly simple when we restrict ourselves to not
very large values of the coupling strength ��0�d. Below we
consider a number of important particular cases.

B. Separatrices: Particular cases

The local response. Here we set first, see Eq. �11�, �0
= ��0� to obtain

�� =
��0��tr

1 + �2tr
2 , �� =

��0�
1 + �2tr

2 . �17�

With �=0 the rate coefficient � is pure imaginary.
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The condition �=1 is fulfilled when

��0�d = j� +
1

j�
ln2 r0, �18�

with j=1,3 , . . . . Separatrix 1 in Fig. 3�a� shows the coupling
strength ��0�d versus the input intensity ratio r0= �R0�2 / �S0�2
for j=1 �the branches with j=3,5 , . . . correspond to much
higher values of ��0�d�. This dependence is symmetric to the
replacement r0 by r0

−1. The minimum value of the coupling
strength, ���0�d�min=�, takes place at r0=1. The detuning
relevant to the condition �=1 is given by �tr=−ln r0 /�; it
changes sign when r0 is replaced by r0

−1. The condition �
=0 is fulfilled when �=0 and ��0�d=2� ,4� , . . .; see line 3
in Fig. 3�a�.

Consider now the lines separating the regions with differ-
ent steady-state values of �s. Two additional separatrices 2
and 4 are necessary to specify different regions for ��0�d
�3�; see Fig. 3�a�. Below line 2—i.e., for ��0�d��—the
only possible steady state corresponds to �s=� /2. Two ad-
ditional states with �s=0 �or with �s=�� can formally be
found within the region restricted by the curves 1, 2, and 4.
The number of possible steady states—i.e., the number of
solutions of Eqs. �15� and �16�—grows with increasing ��0�d.
Keeping this fact in mind, it is easy to understand that inter-
section of lines 1 and 3 �they correspond to the conditions

����0�d ,r0�=1 and 0, respectively� does not contradict com-
mon sense because these lines separate different branches of
steady-state solutions.

To make more use of Fig. 3�a�, we consider a representa-
tive example. Imagine that we increase ��0�d starting from 0
for r0=102. Crossing line 2 results in the appearance of two
steady-state solutions with �s=� but it does not affect the
solution with �s=� /2. Crossing line 4 is not accompanied
by qualitative changes with respect to the steady states with
�s=� /2 and �; it results, however, in the appearance of two
new solutions with �s=−� /2. Crossing line 3, where �=0,
is accompanied by a bifurcation for all types of steady states;
in particular, the unique � /2 branch splits into two branches.
Note, last, that crossing separatrix 1, where �=1, also results
in a bifurcation for all branches of steady-state solutions.

For each admitted type of steady-state solution ��s=
−� /2 ,0 , +� /2 ,�� the frequency detuning � is a function of
r0 and ��0�d. When several solutions of the same type are
allowed, each point of the r0 , ��0�d plane corresponds to sev-
eral values of �.

We will see below that most of the feedback-controlled
steady states are unstable for large values of ��0�d; such
states cannot be realized in practice and they are of minor
interest.

What happens if the sign of the local response is inverted,
�0=−��0�? The answer is simple: Within all above regions,
the feedback sign �and the sign of �� has to be inverted to
ensure the same behavior of the system. The form of sepa-
ratrix 1 remains unchanged.

The nonlocal response. Here we set first �0=−i��0� which
gives the relations

�� =
��0�

1 + �2tr
2 , �� = −

��0��tr

1 + �2tr
2 . �19�

The rate coefficient � is real for �=0 and the energy transfer
S→R takes place.

The condition �=1 is fulfilled when

��0�d = − �ln r0 + �2/ln r0� . �20�

This relation describes the lowest branch of the dependence
of ��0�d on r0; see separatrix 1 in Fig. 3�b�. The allowed
values of r0 are smaller than 1 so that the contrast m is an
increasing function of the propagation coordinate z. The ab-
solute minimum of the coupling strength, ���0�d�min=2�, is 2
times higher than that for the local response; it occurs at r0
=exp�−���0.043. The relevant dependence ��r0� is given
by �tr=� / ln r0; the optimizing value of �tr is −1.

Apart from separatrix 1, lines 2 and 3 shown in Fig. 3�b�
are important to describe possible steady-state solutions. For
sufficiently small values of the coupling strength the only
possible state corresponds to the condition �s=�. Two addi-
tional steady-state solutions with �s= ±� /2 appear in the
region restricted by the lines 2 and 3. For ��0�d�2� there
are at least four different regions. For each of them one can
find several different feedback-controlled steady states. Most
of them are not stable. Each type of the feedback-controlled
steady state corresponds, as earlier, to a separate branch of
the dependence ��r0 , ��0�d�.

FIG. 3. Lines separating different regions on the r0 , ��0�d plane
for the local �a� and nonlocal �b� responses. Separatrix 1 corre-
sponds to the condition �=1; above it �within the gray regions�
periodic states take place. The signs 0 ,� /2 , . . . mean that steady-
state solutions with �s=0,� /2 , . . . can be found formally within the
indicated regions. Repetition of the same sign means the frequency
degeneration—two, three, … steady states with the same value of
�s but different values of � correspond to one pair r0, ��0�d.
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What happens if the sign of the nonlocal response is in-
verted, �0= i��0�—i.e., if the direction of the energy transfer
is R→S? Separatrix 1 in Fig. 3�b� is replaced by the mirror-
reflected curve; i.e., the allowed values of r0 are larger than
1.

C. Stable and unstable feedback-controlled steady states

By speaking of stability of the found steady states we
mean stability against small perturbations: Imagine that a
small perturbation is superimposed on a steady state. If this
perturbation is decreasing in time, the state is stable; if it is
increasing, the state is unstable.

It is worth mentioning that each steady state refers not
only to the feedback-controlled system �with proper bound-
ary conditions imposed on the opposite crystal faces� but
also to the conventional PR system with certain prescribed
input values R0 and S0. However, the properties of stability
of these two systems are entirely different. In the second
case, all steady states are stable, whereas in the first case
there are stable and unstable steady-state solutions.

The problem of stability is very resistent to analytical
studies. It can, however, be solved numerically. To clarify the
essence of our analysis, we describe two representative nu-
merical experiments; see also �10�. For both of them, the
nonlinear response is local, �0= ��0�, the feedback is initially
switched off, and some input values R0�t�=const and S0�t�
�exp�−i�t� are imposed. The input intensity ratio r0

= �R0�2 / �S0�2 is the same in both experiments but the values of
��0�d and � are different: For the first try, the above three
parameters are chosen in such a way that �s�� /2 in steady
state and the point log r0 , ��0�d lies below separatrix 2 in Fig.
3�a�. For the second try, the point log r0 , ��0�d lies above
separatrix 3 and again �s�� /2 in steady state.

With the feedback switched off and the input parameters
fixed, the conventional system always arrives at a unique
steady state. The initial sections of curves 1 and 2 in Fig. 4

�they are to the left of the dashed line� exhibit the corre-
sponding dependences of ��t� for the transient process with a
zero initial value of the grating amplitude. This shows that
the steady state with �s=� /2 is stable for the conventional
system and ensures small perturbations of the amplitudes.

At t=20tr the feedback � /2 is switched on; i.e., instead of
the boundary conditions at the input we have imposed proper
boundary conditions that couple the amplitudes R and S on
the opposite faces of the sample. One sees that the behavior
of ��t� does not experience any visible changes for the first
numerical experiment and changes strongly for the second
one. In the second case ��t� does not tend to any steady-state
value; see also below. We conclude that the second steady
state is not stable.

The above described method can be improved by using an
adiabatic procedure: We can change slowly �on the scale of
the PR response time tr� the parameters r0 and/or ��0�d upon
approaching a certain steady state. Within the region of these
parameters where the feedback-controlled steady state is
stable the diffraction efficiency �and/or other observable
characteristics� follows adiabatically the steady-state values.
As soon as the steady state becomes unstable, the efficiency
shows dramatic temporal changes and deflects strongly from
its steady-state value. We can find in this way the boundary
of the stability region.

An example of the use of the adiabatic procedure for the
case of local response ��0= ��0�� is shown in Fig. 5.

After approaching very closely the conventional steady
state, which is characterized by �s=0, �0d=4, and r0
=10−3, we switched on the 0 feedback condition and in-
creased slowly �with the rate 
10−2tr

−1� the beam ratio r0
from 10−3 to 103. Until crossing separatrix 1 the diffraction
efficiency � practically coincides with its steady-state value.
After crossing this separatrix �i.e., within the gray region of
Fig. 3�a� where the steady-state solution with �s=0 is al-
lowed� the system exhibits first a nonstationary periodic be-
havior; the phase difference �s deflects here strongly from a
zero value. For r0�0.8 �i.e., within the gray region� the dif-
fraction efficiency drops down abruptly and remains very
small with increasing r0; the phase �s is far from zero in this
range �see also the next section for more details�.

FIG. 4. Dependences ��t� for the case of the local response,
r0=2, and two different values of the coupling strength. The curves
1 and 2 are plotted for ��0�d=2 and 7, respectively. The moment
when the � /2 feedback is switched on, t=20tr, is shown by the
vertical dashed line. For t�20tr the time evolution occurs under
fixed input parameters. The region of curve 2 where ��1 corre-
sponds to a periodic state.

FIG. 5. Dependence ��r0� for the case of local response �0d
=4, the inertial �tf / tr=10−3� feedback condition �s=0, and the in-
put beam ratio r0 slowly increasing from 10−3 to 103; the vertical
dashed lines mark the boundaries of the gray region at the chosen
value of the coupling strength.
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Let us summarize the results of our stability analysis.
Consider first the case of local PR response, �0= ��0�. Above
separatrix 1—i.e., inside the gray region in Fig. 3�a�—all
formally allowed feedback-controlled steady states are not
stable. For each point lying outside the gray region we al-
ways have one stable � /2 state. Below line 3 this state is
unique; above this line the stable � /2 branch possesses the
highest value of �. Within the left and right white regions
restricted by curves 1, 2, and 4 we have additionally one
stable 0 and � state, respectively. Within the left white re-
gion restricted by curves 1, 3, and 4, one of two states with
�s=0 and one of two states with �s=−� /2 are stable.
Within the right white region restricted by curves 1, 3, and 4,
one of two states with �s=� and one of two states with
�s=−� /2 are stable. Within the white regions above line 3,
one state with �s=0 and one state with �s=� are stable in
addition to the state with �s=� /2. In any case, two or more
branches of the same type cannot be stable simultaneously in
the case of local response.

Consider now some observable characteristics of the
above stable steady states. The solid lines in Fig. 6 show the
dependence ��r0� for the � /2 feedback and several represen-
tative values of the coupling strength �0d.

The dashed lines show the dependences ��r0� �for the
same values of �0d� that are obtained under the condition of
maximum diffraction efficiency. In other words, for each
combination of �0d and r0 we have chosen the value of �
maximizing �; �s�� /2 in this case. One sees that the � /2
feedback does not maximize ���0d ,r0� in the general case.
The maximization occurs only for r0=1 �when ��0�d���
and for the values of �0d and r0 belonging separatrix 1 in
Fig. 3�a�. At the same time, the solid and dashed lines are
very close to each other for �0d��; the � /2 feedback leads
in this region to an almost ideal maximization of �. The
higher �0d and �log r0�, the worse is the feedback maximiza-
tion. The gaps in the dependences ��r0� for �0d�� are
caused by the disappearance of the steady state with �s
=� /2 in the gray region in Fig. 3�a�.

Now we turn to the case of nonlocal response �0=−i��0�.
In accordance with Fig. 3�b�, one branch of steady-state so-

lutions relevant to the condition �s=� exists in the whole
range of parameters ��0�d and r0; this branch is distinguished
by a zero value of the frequency detuning, �=0. This im-
portant solution is stable everywhere, including the gray re-
gion restricted by the separatrix 1. All other steady-state so-
lutions that are allowed in the gray region are not stable.

Outside the gray region the allowed steady states with
�s= ±� /2 are stable. Two of four additional states with �s
=�, which exist above the line 2, are stable as well. The
same is true with regard to two of four states with �s=0 that
are allowed above line 2. In such a way, we have the situa-
tion when two or even three stable steady states are possible
under the same external conditions. The result of the
feedback-controlled evolution depends here on the initial
conditions for the grating amplitude.

Consider now the most remarkable features of the men-
tioned stable steady-state solution with �s=� and �=0.

Figure 7 shows the diffraction efficiency � as a function
of the input beam ratio r0 for four representative values of
the coupling strength. With increasing ��0�d this function ap-
proaches closely the unit value within a wide range of r0.

IV. NONLINEAR REGIMES

A. Main options

For any combination of the experimental parameters ��0�d
and r0 and for any type of the PR nonlinearity �local or
nonlocal� one can impose any of four main feedbacks 0,
±� /2, and �. The question now is what are the expected
regimes of the feedback operation?

Prior to answer this fundamental question, we systematize
the results of the previous analysis: It is possible that �a� the
feedback admits at least one stable steady state, �b� the feed-
back admits unstable steady-state solutions, or �c� the feed-
back does not admit steady-state solutions �the “forbidden
feedback”�.

One can expect that the nonlinear system arrives to a
steady state in the case �a�. This expectation, however, can
fail. It is possible that a stable �against small perturbations�
state is unattainable for certain initial conditions. In such

FIG. 6. Dependence ��r0� for the case of the local response and
three different values of the coupling strength. The curves 1, 2, and
3 are plotted for ��0�d=2, 3, and 5, respectively. The solid lines
correspond to the condition �s=� /2 while the dashed lines are
obtained by the � maximization of ��r0 ,�0d ,��.

FIG. 7. Dependence ��r0� for the case of nonlocal local re-
sponse, the feedback condition �s=�, and four values of the cou-
pling strength. The curves 1, 2, 3, and 4 are plotted for ��0�d=2, 4,
and 6, and 8, respectively.
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cases �they occur most often near the border of the gray
region� the observable characteristics of the system depend
on its prehistory; the final stage of the feedback-controlled
evolution can, e.g., be different when we start from zero and
nonzero values of the grating amplitude. In the cases �b� and
�c� one might expect essentially non-steady-state behavior of
the system. Typically, this expectation is correct but in some
cases it is wrong.

Our extensive numerical experiments have allowed to
identify four main scenarios of the feedback-controlled evo-
lution.

�i� Achievement of a stable steady state. In this case 0
���1, the phase difference �s is fixed by the relevant
feedback condition, and the input phase �s�t� increases or
decreases linearly, which means the presence of a frequency
detuning � between the R and S beams. Typically it takes
place for the variant �a�; see above. The feedback inertia is
not important in this case; the ideal and inertial feedback
conditions give essentially the same results.

This scenario is illustrated by Fig. 8 for the local response
and the feedback 0. Despite a rather large value of the cou-
pling strength �we are above separatrix 3 in Fig. 3�a�� and
proximity of the gray region, the steady state is achieved
without any complicated transient stage. The diffraction ef-
ficiency approaches the steady-state value ��0.92� in about
t
7tr and the feedback-controlled input phase �s�t� first ex-
periences a growth and then decreases with a constant rate,
��−6tr

−1.
�ii� Achievement of a familiar periodic state. This scenario

is typical for the case �b�. The efficiency � oscillates here in
the close vicinity of 1 or 0, the phase difference �s�t� shows
strong oscillations, and the input phase �s�t� experiences
strong oscillations superimposed generally on a linear trend.

Inertia of the feedback loop is crucial in this case. Examples
of such a periodic behavior for the local response, the � /2
feedback, ��t��1, and ��0 are known from �11,12�; this
regime is also illustrated by Fig. 4. Here we exhibit a new
periodic state which is relevant to the nonlocal response �0
=−i��0�, the 0 feedback, and ��t��1; see Fig. 9.

The chosen parameters correspond to the gray region of
Fig. 3�b�. One sees that after a rather short transient stage the
system arrives at a periodic state. It is distinguished by peri-
odic �±� jumps of the input phase �s�t� with a zero average
slope. The phase difference �s�t� deflects strongly from a
zero value which is expected for the ideal fee back condition;
the influence of the feedback inertia �it is characterized by
the ratio tf / tr=10−3� is extremely strong.

�iii� Achievement of a quasisteady state relevant to the
erasure operation mode. This scenario occurs typically for
the variant �c�. The imposed feedback condition is not com-
patible here with the achievement of a genuine steady state.
Trying to approach the forbidden value of �s, the feedback
establishes a very-high-frequency detuning; the value of � is
restricted only by the feedback inertia. As a result, the space-
charge grating is very weak and ��1. An example of this
behavior for the 0 feedback is given in Fig. 10.

The diffraction efficiency �, the frequency detuning �,
and the phase difference �s are about 27%, 12tr

−1, and 7°,
respectively, at the final stage. Oscillations of the observable
parameters are absent. The same mode of feedback operation
can be seen in Fig. 5 for r0�0.8.

FIG. 8. Dependences ��t� and �s�t� for the feedback 0 in the
case of local response �0d=6.5 and r0=0.01.

FIG. 9. Dependences ��t�, �s�t�, and �s�t� showing the achieve-
ment of a periodic state with ��t��1 in the case of nonlocal re-
sponse, ��0�d=8, r0=0.1, and the 0 feedback.
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�iv� Achievement of an anomalous periodic state. In this
case, the diffraction efficiency ��t� oscillates with a large
amplitude and a large period. These characteristics are al-
most free of the influence of the feedback inertia. This new
scenario of the feedback-controlled behavior is illustrated by
Fig. 11 for the case of local response, �0d=8, and r0=100.

At the final stage, the phase difference �s is close to the
“ideal” value −� /2 and the diffraction efficiency oscillates
between �0.04 and 0.8 while the input phase �s experiences
noticeable periodic oscillations and grows on average with a
constant with a constant rate. Another example of the same
regime can be seen in Fig. 5 for 0.2�r0�0.8.

B. What and where can be achieved?

The purpose of this subsection is to outline what kind of
nonlinear behavior is expected in different regions of the
��0�d ,r0 plane for different types of the PR response and
different feedback conditions.

The local response. Different regions of the ��0�d ,r0 plane
are given here by Fig. 3�a�. Outside the gray region the use
of the “allowed” � /2 feedback always results in achieve-
ment of a unique steady state with 0���1; i.e., regime �i�
takes place. Within the gray region, this feedback brings the
system to a periodic state with ��1; i.e., regime �ii� occurs.
The situation with other feedbacks is more complicated.

Below separatrix 2 the forbidden feedbacks −� /2, 0 and
� correspond to regime �iii�—i.e., to the achievement of a
quasisteady state with ���tr�1 and ��1.

In the left white region restricted by curves 1, 2, and 4 the
use of the allowed feedback 0 results usually in regime �i�
and seldom in regime �iii�. With the forbidden feedbacks
−� /2 or � the system develops here according to regime
�iii�. Since crossing curve 4 does not affect steady states with
�s=0 and �, nothing is changing for the feedbacks 0 and �
in the left white region restricted by curves 1, 3, and 4. The
use of the −� /2 feedback leads here to the steady state. In
the left white region above separatrix 3 employment the 0
and � feedbacks typically brings the system to the corre-
sponding steady states �regime �i��. Near the border of gray
region regime 3 also becomes possible. The feedback −� /2
leads often to anomalous periodic states �regime �iv��.

The above described with respect to the left white regions
is applicable to the mirror-reflected right white regions if we
replace the feedback 0 by the feedback �.

Consider now the gray region. The use of feedbacks 0 and
� leads here either to periodic states with ��1 �regime �ii��
or to quasisteady states with ��1 �regime �iii��. The higher
the coupling strength, the larger is the amplitude of periodic
oscillations of ��t�; regime �ii� can thus transform gradually
into regime �iv�. For modest values of the coupling strength,
��0�d�2�, the feedback −� /2 leads either to periodic states
with ��1 or to quasisteady states. For larger values of ��0�d
periodic states with large oscillations of � �regime �iv�� be-
come possible.

The nonlocal response. Different regions of the ��0�d ,r0
plane are given now by Fig. 3�b�. The feedback � always
leads to establishment of a stable steady state. Except for two

FIG. 10. Dependences ��t�, �s�t�, and �s�t� for the local re-
sponse, �0d=2, r0=1, and the forbidden 0 feedback.

FIG. 11. Dependences ��t�, �s�t�, and �s�t� for the local re-
sponse, �0d=8, r0=100, and the feedback −� /2.
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right white regions above line 2, this state is unique and it
corresponds to �=0. Within the mentioned white regions,
one of three stable steady states is expected to be achieved.
For not very large values of ��0�d these states possess similar
characteristics.

The use of the forbidden ±� /2 and 0 feedbacks in the
white region restricted from above by curves 2 or 3 leads to
quasisteady states with ��1 �regime �iii��. In the adjacent
white region restricted from above and below by curves 2
and 3, respectively, the feedbacks ±� /2 lead the system to
the corresponding unique stable steady states �regime �i��.
The forbidden 0 feedback correspond here to periodic states
with ��t��1 �regime �ii��.

Within the left white region restricted by curves 1 and 2,
the ±� /2 feedbacks also lead to establishment of steady
states; the corresponding values of � can be very close to 1.
The use of the feedback 0 results here either in steady states
or periodic states with ��t��1. The behavior of the system
for the ±� /2 feedbacks remains similar in the white region
restricted by curves 1, 2, and 3; however, the use of 0 feed-
back leads here to periodic states with ��1. Last, in the
upper right region we have quasisteady states �regime �iii��
for all forbidden feedbacks �±� /2 and 0�.

Within the gray region we have periodic states with ��t�
�1 for the ±� /2 feedbacks. The 0 feedback can lead to
different periodic states: Near the left boarder we observed
typically regime �iv� with modest and large deviations of
��t� from 1. Near the right border of the region we have
typically regime �ii� with ��t��1.

V. DISCUSSION

Let us discuss first the main merits of our theoretical ap-
proach that combines analytical and numerical tools.

We have found a simple approach to the problem of
feedback-controlled wave coupling. It is based on determi-
nation of the regions of essentially different nonlinear behav-
ior on the plane of experimental parameters, coupling
strength ��0�d, and the input intensity ratio r0. The curves
separating these regions �separatrices� can be found analyti-
cally for two main types of the photorefractive nonlinear
response �local and nonlocal� and four main kinds of the
feedback conditions �±� /2, 0, and ��.

As soon as the separatrices are drawn, we know whether a
certain feedback �and chosen experimental parameters� is
compatible with the existence of steady-state solutions for
the wave amplitudes. If the answer is negative �the forbidden
feedback�, achievement of a conventional steady state is not
possible. Thus, we can obtain important information about
nonlinear behavior of our nonlinear system.

If a steady-state solution is formally possible �the allowed
feedback�, it is either stable or nonstable against small per-
turbations. Fortunately, the borders of different regions on
the ��0�d ,r0 plane, which are obtained from the steady-state
analysis, determine the borders of the stability regions. This
enables us to determine, using numerical tools, which of the
allowed feedback-controlled steady-state solutions are stable.

The next problem is to classify different regimes of the
feedback operation and to describe when and how they can

be realized. Basically, this nonlinear problem and especially
its second part, is very difficult. Knowledge of the regions of
the existence and stability of the feedback-controlled steady
states is not sufficient for a full-scale analysis of possible
nonlinear regimes. However, there is a strong correlation be-
tween the relatively simple results of our steady-state analy-
sis and the nonlinear behavior of the feedback-controlled
system. This has allowed us to present a qualitative �but not
complete� picture of the expected feedback-controlled behav-
ior for not too large values of the coupling strength.

Our analysis has extended considerably the range of ex-
pected manifestations and applications of the feedback-
controlled wave coupling. Earlier the main efforts were fo-
cused on the case of local response and the feedbacks ±� /2.
The present theory has covered all main types of the PR
nonlinearity and feedback conditions.

A simple and useful outcome of this generalization is the
notion of allowed and forbidden feedbacks. A forbidden
feedback is not compatible with steady-state solutions;
switching to such an operation mode always results in era-
sure of the space-charge field. The use of proper allowed
feedbacks leads to maximization of the diffraction efficiency
for any types of PR response.

It is interesting that the periodic states that are found for
different types of feedback conditions possess essentially dif-
ferent observable characteristics. It is possible, in particular,
to realize not only the periodic states with shallow and fast
oscillations of the diffraction efficiency but also the states
with big and slow periodic changes.

The establishment of the familiar steady states with �
=0 for any values of the coupling strength in the case of
nonlocal response and the � feedback is also an important
outcome of our analysis. It means that the feedback ensures
stabilization �against phase fluctuations� the conventional ef-
fects of spatial amplification and energy transfer.

In addition to the above considered cases of local and
nonlocal PR nonlinearity, the case of the so-called resonant
nonlinear response would be of a big interest. This response
is typical for dc-biased photorefractive crystals of the sillen-
ite family �Bi12RO20, R=Si,Ti,Ge� and semiconductors like
GaAs and CdTe. Its distinctive feature is a considerable en-
hancement of the grating amplitude under the condition of
the linear resonance �=K between the detuning � and the
eigenfrequency of weakly damped space-charge waves K;
see �2,22� and references therein. The first experiments on
feedback-controlled wave coupling in the case of the reso-
nant response were performed in �23,24�. Theoretical consid-
erations of this case are complicated by the necessity to take
into account the excitation of higher spatial harmonics
�2K ,3K , . . . � of the space-charge field for the values of light
contrast m�1 �22,25� and also by the vectorial character of
wave coupling �26�.

We hope that this theoretical study opens new prospects
for experiments on feedback-controlled wave coupling in
different photorefractive materials.

VI. CONCLUSIONS

For two main types of the photorefractive nonlinear re-
sponse, local and nonlocal, and four different types of feed-
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back conditions, �s=0, ±� /2, and �, we have found ana-
lytically the regions of experimental parameters �the
coupling strength and the input intensity ratio� with qualita-
tively different nonlinear behavior.

Using direct numerical simulations, we have identified
four main nonlinear regimes for the feedback-controlled
wave coupling.

�i� Achievement of a conventional steady state with mov-
ing light fringes.

�ii� Achievement of a conventional periodic states with
small and fast oscillations of the diffraction efficiency near
the values of 1 and 0.

�iii� Realization of a quasisteady state with an extremely
large value of the frequency detuning between the recording

waves and a small value of the diffraction efficiency.
�iv� Establishment of an anomalous periodic state with

large and slow oscillations of the diffraction efficiency.
It is found finally how to proceed to these regimes using

the notion of regions with different feedback-controlled be-
havior.

ACKNOWLEDGMENT

Financial support from the Russian Foundation for Fun-
damental Studies �Grant No. 03-02-16083� is gratefully ac-
knowledged.

�1� Photorefractive Materials and Their Applications I, edited by
P. Günter and J.-P. Huignard, Vol. 61 of Topics in Applied
Physics �Springer-Verlag, Berlin, 1988�.

�2� L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics
and Applications of Photorefractive Materials �Clarendon
Press, Oxford, 1996�.

�3� K. Buse, Appl. Phys. B: Lasers Opt. 64, 391 �1997�.
�4� A. A. Kamshilin, J. Frejlich, and L. Cescato, Appl. Opt. 25,

2375 �1986�.
�5� J. Frejlich, L. Cescato, and G. F. Mendes, Appl. Opt. 27, 1967

�1988�.
�6� A. Freschi and J. Frejlich, J. Opt. Soc. Am. B 11, 1837 �1994�.
�7� P. M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun.

117, 35 �1995�.
�8� A. A. Freschi and J. Frejlich, Opt. Lett. 20, 635 �1995�.
�9� P. M. Garcia, A. A. Freschi, J. Frejlich, and E. Krätzig, Appl.

Phys. B: Lasers Opt. 63, 207 �1996�.
�10� V. P. Kamenov, K. H. Ringhofer, B. I. Sturman, and J. Frejlich,

Phys. Rev. A 56, R2541 �1997�.
�11� E. V. Podivilov, B. I. Sturman, S. G. Odoulov, S. L. Pavlyuk,

K. V. Shcherbin, V. Ya. Gayvoronsky, K. H. Ringhofer, and V.
P. Kamenov, Opt. Commun. 192, 399 �2001�.

�12� E. V. Podivilov, B. I. Sturman, S. G. Odoulov, S. L. Pavlyuk,
K. V. Shcherbin, V. Ya. Gayvoronsky, K. H. Ringhofer, and V.
P. Kamenov, Phys. Rev. A 63, 053805 �2001�.

�13� B. I. Sturman, V. P. Kamenov, M. V. Gorkounov, and K. H.
Ringhofer, Opt. Commun. 216, 225 �2003�.

�14� B. I. Sturman, A. S. Gorkounova, and K. H. Ringhofer, Eur.

Phys. J. D 23, 291 �2003�.
�15� E. V. Podivilov, B. I. Sturman, and M. V. Gorkounov, JETP

98, 896 �2004�.
�16� E. V. Podivilov, B. I. Sturman, and M. Gorkounov, Ukr. J.

Phys. 49, 418 �2004�.
�17� M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse,

Appl. Phys. B: Lasers Opt. 77, 43 �2003�.
�18� J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina,

J. Opt. Soc. Am. B 14, 1741 �1997�.
�19� K. H. Ringhofer, V. P. Kamenov, B. I. Sturman, and A. I.

Chernykh, Phys. Rev. E 61, 2029 �2000�.
�20� E. V. Podivilov, B. I. Sturman, S. G. Odoulov, S. M. Pavlyuk,

K. V. Shcherbin, V. Ya. Gayvoronsky, K. H. Ringhofer, and V.
P. Kamenov, OSA Trends Opt. Photonics Ser. 62, 221 �2001�.

�21� N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin,
and V. L. Vinetskii, Ferroelectrics 22, 949 �1979�.

�22� B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, J. Opt.
Soc. Am. B 10, 1919 �1993�.

�23� A. Freschi, P. M. Garcia, and J. Frejlich, Opt. Commun. 143,
257 �1997�.

�24� M. C. Barbosa, I. de Oliveira, and J. Frejlich, Opt. Commun.
201, 293 �2002�.

�25� T. E. McClelland, D. J. Webb, B. I. Sturman, E. Shamonina,
M. Mann, and K. H. Ringhofer, Opt. Commun. 131, 315
�1996�.

�26� B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina,
V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A.
Kamshilin, Phys. Rev. E 60, 3332 �1999�.

REGIMES OF FEEDBACK-CONTROLLED BEAM COUPLING PHYSICAL REVIEW E 72, 016621 �2005�

016621-11


